Asynchronous Variational Integrators

نویسندگان

  • A. Lew
  • J. E. Marsden
  • M. Ortiz
چکیده

We describe a new class of asynchronous variational integrators (AVI) for nonlinear elastodynamics. The AVIs are distinguished by the following attributes: (i) The algorithms permit the selection of independent time steps in each element, and the local time steps need not bear an integral relation to each other; (ii) the algorithms derive from a spacetime form of a discrete version of Hamilton’s variational principle. As a consequence of this variational structure, the algorithms conserve local momenta and a local discrete multisymplectic structure exactly. To guide the development of the discretizations, a spacetime multisymplectic formulation of elastodynamics is presented. The variational principle used incorporates both configuration and spacetime reference variations. This allows a unified treatment of all the conservation properties of the system. A discrete version of reference configuration is also considered, providing a natural definition of a discrete energy. The possibilities for discrete energy conservation are evaluated. Numerical tests reveal that, even when local energy balance is not enforced exactly, the global and local energy behavior of the AVIs is quite remarkable, a property which can probably be traced to the symplectic nature of the algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Integrators Thesis by Matthew West In Partial Fulfillment of the Requirements for

Variational integrators are a class of discretizations for mechanical systems which are derived by discretizing Hamilton’s principle of stationary action. They are applicable to both ordinary and partial differential equations, and to both conservative and forced problems. In the absence of forcing they conserve (multi-)symplectic structures, momenta arising from symmetries, and energy up to a ...

متن کامل

. N A ] 1 8 A ug 2 00 5 GENERALIZED GALERKIN VARIATIONAL INTEGRATORS

Abstract. We introduce generalized Galerkin variational integrators, which are a natural generalization of discrete variational mechanics, whereby the discrete action, as opposed to the discrete Lagrangian, is the fundamental object. This is achieved by approximating the action integral with appropriate choices of a finite-dimensional function space that approximate sections of the configuratio...

متن کامل

Generalized Galerkin Variational Integrators

We introduce generalized Galerkin variational integrators, which are a natural generalization of discrete variational mechanics, whereby the discrete action, as opposed to the discrete Lagrangian, is the fundamental object. This is achieved by approximating the action integral with appropriate choices of a finite-dimensional function space that approximate sections of the configuration bundle a...

متن کامل

Asynchronous multi-domain variational integrators for non-linear problems

We develop an asynchronous time integration and coupling method with domain decomposition for linear and non-linear problems in mechanics. To ensure stability in the time integration and in coupling between domains, we use variational integrators with local Lagrange multipliers to enforce continuity at the domain interfaces. The asynchronous integrator lets each domain step with its own time st...

متن کامل

Stability of Asynchronous Variational Integrators

The formulation of multiple–time–step integrators can provide substantial computational savings for mechanical systems with multiple time scales. However, the scope of these savings may be severely limited by the range of allowable time step choices. In this paper we have performed an exhaustive study of the linear stability of the fully asynchronous methods called AVI (asynchronous variational...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003